Trivariate Spline Collocation Methods for Numerical Solution to 3D Monge-Ampère Equation

نویسندگان

چکیده

We use trivariate spline functions for the numerical solution of Dirichlet problem 3D elliptic Monge-Ampére equation. Mainly we collocation method introduced in [SIAM J. Numerical Analysis, 2405-2434,2022] to numerically solve iterative Poisson equations and an averaged algorithm ensure convergence iterations. shall also establish rate under a sufficient condition provide some evidence show rates. Then present many computational results demonstrate that this approach works very well. In particular, tested known convex solutions as well nonconvex over domains compared them with several existing methods efficiency effectiveness our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

متن کامل

C0 penalty methods for the fully nonlinear Monge-Ampère equation

In this paper, we develop and analyze C0 penalty methods for the fully nonlinear Monge-Ampère equation det(D2u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well a...

متن کامل

Continuity Estimates for the Monge-Ampère Equation

In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.

متن کامل

Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation

A numerical method for the solution of the elliptic MongeAmpère Partial Differential Equation, with boundary conditions corresponding to the Optimal Transportation (OT) problem is presented. A local representation of the OT boundary conditions is combined with a finite difference scheme for the Monge-Ampère equation. Newton’s method is implemented leading to a fast solver, comparable to solving...

متن کامل

b-spline collocation approach for solution of klein-gordon equation

we develope a numerical method based on b-spline collocation method to solve linear klein-gordon equation. the proposed scheme is unconditionally stable. the results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. easy and economical implementation is the strength of this approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2023

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-023-02183-9